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1.0 Executive Summary 

The northern segment of the Edwards aquifer covers an area that includes some of the fastest 
growing counties in Texas. As a result of rapid population growth, demand for water in this 
region is also rising. A groundwater availability model simulating flow through this segment of 
the Edwards aquifer was constructed as a groundwater resource management tool. The purpose 
of this tool is to aid groundwater conservation districts, regional water planning groups, and 
others in evaluating groundwater resource management strategies to meet projected groundwater 
demands. This model was constructed by calibrating to steady-state conditions for 1980 and 
historical transient conditions for the period 1980-2000. The calibrated model can be used to 
predict future water-level changes that may result from projected pumping rates and/or climatic 
conditions. 

The model results indicate that (1) no historical regional-scale cones-of-depression exist in the 
northern Edwards aquifer, (2) 60-80 percent of natural discharge is baseflow to perennial streams 
that cross the aquifer outcrop, (3) pumping is less than 20 percent of total discharge, (4) the flow 
system is more active in the unconfined part of the aquifer than in downdip portions, and (5) 
gradual long-term water-level decline is occurring in the Pflugerville-Georgetown area. 
Historical pumping trends indicate steadily increasing municipal, rural domestic, and industrial 
pumping, rising from 20,000 to 30,000 acre-feet/year over the past 20 years. Regional-scale 
drawdown associated with increasing pumping has not been observed, so far, largely because 
pumping is a relatively small portion of the total water budget of this segment of the Edwards 
aquifer. However, pumping results in local drawdown. 

2.0 Introduction 

The northern segment of the Edwards aquifer is an important source of groundwater for 
municipalities, industries, and landowners in central Texas. Rapid population growth in this part 
of Texas has increased interest in the northern segment of the Edwards aquifer and heightened 
concerns about groundwater availability in the aquifer. 

This is the first published model to simulate groundwater flow in the northern segment of the 
Edwards aquifer. The San Antonio and Barton Springs segments have received higher priority 
because groundwater flow models were needed to address pressing issues related to conflicts 
over groundwater demand for municipal, agricultural, recreational, and ecological uses (fig. 2-1). 
The San Antonio segment has been given highest priority because historically it has been the 
sole source of water for many municipalities, including San Antonio, a city with a population 
exceeding 1 million. The San Antonio segment is also an important source of irrigation water in 
that region. Increasing pumping associated with municipal and irrigation demands, together with 
the effects of drought, lowers spring discharge in Barton, San Marcos, and Comal springs. 
Declines in spring discharge affect recreation, flora, and fauna associated with the springs. These 
issues have made understanding groundwater flow through the respective segments of the 
Edwards aquifer of vital importance.  

 

 1



 

Figure 2-1. Segments of the Edwards (Balcones Fault Zone) aquifer. 

The northern segment has received lower priority largely because the largest city in the region, 
Austin, does not rely on the northern segment of the Edwards aquifer for groundwater to meet its 
water demands. However, other smaller municipalities, such as Georgetown, Pflugerville, and 
Round Rock, use groundwater from the Edwards aquifer. Rapid population growth in these and 
adjacent municipalities is likely to be accompanied by rapid growth in demand for groundwater 
from the Edwards aquifer. This growth necessitates our gaining a better understanding of the 
hydrology of this segment of the Edwards aquifer and the potential effects of future population 
growth. This understanding can be achieved through groundwater availability modeling 
(GAM)—development of a state-of-the-art, publicly available, numerical groundwater flow 
model that will provide reliable information on groundwater availability in this aquifer. 

The general approach used in developing this model involved (1) developing a conceptual 
model, (2) organizing and distributing aquifer information for input into the model, (3) 
calibrating a steady-state model for 1980, (4) calibrating a historical transient model for the years 
1980 through 2000, and (5) making predictive simulations. This report describes (1) the study 
area, previous work, and hydrogeologic setting used to develop the conceptual model; (2) the 
code, grid, and model parameters assigned during model construction; (3) calibration and 
sensitivity analysis of steady-state and transient models; (4) predictions of water-level changes; 
(5) limitations of the current model; and (6) suggestions for future improvements. 
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Figure 3-1. Location of the study area. 

3.0 Study Area 

The northern segment of the Edwards aquifer is located in central Texas (fig. 3-1). It is the 
northernmost of the three segments that make up the Edwards (Balcones Fault Zone) aquifer (fig. 
2-1). The study area underlies parts of Bell, Travis, and Williamson counties and extends over 
parts of two regional water planning areas, the Lower Colorado (K) and Brazos (G) Regional 
Water Planning Areas (fig. 3-2). The northern part of the study area also lies within the 
Clearwater Underground Water Conservation District (fig. 3-3). The northern segment of the 
Edwards aquifer extends from the Colorado River in Travis County to the Lampasas River in 
southern Bell County. This segment of the Edwards aquifer is bounded by the Colorado River to 
the south, the western margin of the Edwards and associated limestones outcrop to the west and 
north, and to the east by the easternmost extent of fresh groundwater, referred to as the bad water 
line. 
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Figure 3-2. Location of regional water planning group boundaries in the study area. 

3.1 Physiography and Climate 

The topography of central Texas is relatively flat, with an elevation range of 500 to 1,000 feet 
above sea level (fig. 3-4). There are three physiographic provinces in the study area, the Edwards 
Plateau, Rolling Prairie, and Blackland Prairie (fig. 3-5). The occurrence of these three 
physiographic provinces is related to the underlying geology that will be discussed in more detail 
later in this section.  

In the study area, the Edwards Plateau is composed of the Hill Country, Jollyville Plateau, and 
Lampasas Cutplains. The Jollyville Plateau has been separated from the Hill Country by erosion 
that resulted in the formation of the Colorado River valley. The Hill Country and Jollyville 
Plateau are characterized by highly dissected canyonland, while the Lampasas Cutplains is 
characterized by gently rolling terrain. The Rolling Prairie developed in the Balcones Fault Zone 
and coincides with the outcrop of limestone rocks that overlie the aquifer. The Blackland Prairie 
occurs where the limestones are overlain by younger alluvial units that occur along the margin of 
the Gulf Coastal Plain (Senger and others, 1990). The most prominent topographic feature is the 
Balcones Escarpment, a product of normal faulting in this region. This escarpment forms the  
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Figure 3-3. Location of groundwater conservation districts in the study area. 
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Figure 3-4. Land-surface elevation in the study area. 

boundary between the Jollyville Plateau and Hill Country parts of the Edwards Plateau and the 
Rolling Prairie (Trippet and Garner, 1976). This boundary becomes more subdued to the north in 
the Lampasas Cutplains. 

Central Texas has a sub-humid climate. At weather stations located within the study area, median 
annual precipitation ranges from 20 to 30 inches (fig. 3-6). Approximately 60 percent of annual 
precipitation falls in April through June and September through October (fig. 3-7). Some of this 
precipitation takes the form of severe thunderstorms. These thunderstorms frequently produce 
major flash floods that have the potential to generate recharge to the underlying aquifer (Senger 
and others, 1990). Monthly precipitation is typically lowest during July and August. Precipitation 
data display a wide range of annual precipitation in the study area. Data for the period 1930 
through 1997 indicate annual precipitation ranging from 10 to 55 inches (fig. 3-8). Lowest 
annual precipitation occurred during 1954 through 1956 at some stations. This coincides with the 
drought of the 1950s, which affected the entire state. 
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Figure 3-5. Physiographic provinces in the study area (modified from Senger and others, 
1990). 
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Figure 3-6. Mean annual precipitation (inches) in the study area, from National Climate Data 
Center. 
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Figure 3-7. Mean monthly precipitation at selected stations in the study area, from National 
Climate Data Center. 

Average monthly lake-surface evaporation in this region ranges between 2 and 8 inches          
(fig. 3-9). Lake-surface evaporation is typically highest during summer months (June through 
August) and lowest during winter months (December through February), when precipitation 
exceeds evaporation. The average annual temperature in this region is 68 °F, with mean 
maximum and minimum temperatures of 95 °F and 41 °F, respectively (Brune and Duffin, 
1983). 

3.2 Geology 

Stratigraphic units underlying the study area range in age from the Paleozoic Ellenburger Group 
to Recent alluvium (Brune and Duffin, 1983). Only Cretaceous and younger rocks are exposed at 
the surface (fig. 3-10). Most of these stratigraphic units crop out along the Balcones Fault Zone, 
a zone of normal faulting that trends northeast-southwest through the study area (Trippet and 
Garner, 1976). Total displacement of the Balcones Fault Zone is up to 1,200 feet. Stratigraphic 
units in the study area are composed mainly of limestone and shale or clay. The oldest rock units, 
the Ordovician Ellenburger Group and the Pennsylvanian Bend and Strawn groups, occur at 
great depth and are not known to yield usable water in the study area (Brune and Duffin, 1983). 
The most important aquifer units in the study area occur in the Cretaceous Trinity, 
Fredericksburg, and Washita Groups (fig. 3-11). These Cretaceous units are approximately 2,000 
feet thick and dip gently toward the southeast (Trippet and Garner, 1976). 
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Figure 3-8. Historical annual precipitation at selected stations in the study area, from National 
Climate Data Center. The dashed lines represents the mean average precipitation 
for each station. 

The Trinity Group is divided into the Travis Peak, Glen Rose, and Paluxy Formations (Brune 
and Duffin, 1983). The Travis Peak Formation consists primarily of limestone, sand, and shale. 
The Glen Rose Formation is predominantly composed of alternating layers of limestone and 
dolomite at the top and massive layers of limestone and dolomite at the base. The Paluxy 
Formation is composed of fine quartz sand cemented by calcium carbonate. In the study area, 
this formation is relatively thin, up to 10 feet thick. 

The Fredericksburg Group is divided into the Walnut Formation, Comanche Peak Limestone, 
and Edwards Limestone (Brune and Duffin, 1983). The Walnut and Comanche Peak Formations  
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Figure 3-9. Mean monthly precipitation and pan evaporation from TWDB database. 

are composed of fine-grained limestone and shale. The Walnut and Comanche Peak Formations 
occur primarily in the subsurface in the northern part of the study area. The Edwards Limestone 
is composed of massive vuggy limestone with fine-grained marl at the top of the formation. This 
marl is very thin in the study area and tends to become thicker toward the north. 

The Washita Group is divided into the Georgetown Formation, Del Rio Clay, and Buda 
Limestone (Brune and Duffin, 1983). The Georgetown Formation thins southward and is 
composed of fine-grained limestone that in places is hydraulically connected to the Edwards 
Limestone. The Del Rio Clay and Buda Limestone are composed of shale and fine-grained 
limestone, respectively (Brune and Duffin, 1983). 

The stratigraphic nomenclature of units that compose the Edwards aquifer differs north and south 
of the Colorado River. South of the river, the “Edwards” is treated as a group composed of two 
formations, the Kainer and Person Formations (Rose, 1972). The Kainer Formation is equivalent 
to the Walnut Formation, Comanche Peak Limestone, and lower parts of the Edwards Limestone. 
Equivalents of the Person Formation are largely absent north of the Colorado River. North of the 
Colorado River, the uppermost parts of the Edwards Limestone are equivalent to the basal 
members of the Person Formation. 

 11



 

 

Figure 3-10. Surface geology in the study area. 
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Figure 3-11. Stratigraphic and hydrostratigraphic units in the study area. 

4.0 Previous Work 

Many geologic and hydrogeologic reports include the northern segment of the Edwards aquifer. 
Studies of the stratigraphy and structure of the area include Tucker (1962), Proctor and others 
(1974), Collins (1987), and Kreitler and others (1987). Woodruff and others (1985) and 
Yelderman and others (1987) are compendia that provide information on different aspects of the 
hydrogeology of the northern segment, such as water supply development, transmissivity 
distribution, and pump-test analysis. More detailed hydrogeologic studies include Klemt and 
others (1975), Brune and Duffin (1983), Senger and Kreitler (1984), Baker and others (1986), 
Kreitler and others (1987), Flores (1990), Duffin and Musick (1991), and Ridgeway and Petrini 
(1999). Senger and others (1990) discussed both the groundwater geochemistry and hydrology of 
the northern segment. The review of groundwater flow models conducted in Texas by Mace 
(2001b) indicates that there are no published models for the northern segment of Edwards 
aquifer. 

Several regional and sub-regional models have simulated groundwater flow in the San Antonio 
and Barton Springs segments of the Edwards aquifer (Campana, 1975; Knowles and Klemt, 
1978; Mahin, 1978; Klemt and others, 1979; Mahin and Campana, 1983; Slade and others, 1985; 
Maclay and Land, 1988; Kuniansky, 1993; Kuniansky and Holligan, 1994; Barrett, 1996; Uliana 
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and Sharp, 1996; Scanlon and others, 2001). However, none of these models extended north of 
the Colorado River. 

5.0 Hydrogeology 

The hydrogeologic setting of the northern segment of the Edwards aquifer is described by 
hydrostratigraphy, structure, water levels, recharge, discharge, surface-water features, and 
hydraulic properties. Each of these factors is described in more detail below. 

5.1. Hydrostratigraphy  

The northern segment of the Edwards aquifer generally consists of the Comanche Peak 
Limestone, Edwards Limestone, and Georgetown Formation (fig. 5-1). These stratigraphic units 
constitute the upper Fredericksburg and lower Washita Groups and are collectively referred to as 
the Edwards and associated limestones (Brune and Duffin, 1983). The aquifer overlies older 
Cretaceous rock of the Walnut and Glen Rose formations and is overlain by younger units that 
consist of the Del Rio Clay, Buda Limestone, Austin Chalk, Taylor Marl, and Navarro Group. 
The Walnut Formation and Del Rio Clay are recognized as confining units (Brune and Duffin, 
1983; Baker and others, 1986). The base of the aquifer is defined as the base of rocks having 
greater water-yielding capabilities (Baker and others, 1986). In most areas, this excludes the 
Walnut Formation, although in other areas the Walnut Formation is composed of potentially 
permeable shell beds and may thus be included in the Edwards aquifer. Karstification in the form 
of honeycombing, sinkholes, and caves allows rapid infiltration and percolation of water through 
the aquifer. 

 

Figure 5-1. Schematic stratigraphic column of the study area. 
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The Comanche Peak Limestone is composed of nodular and fossiliferous marly limestone. This 
unit is characterized by considerable jointing (Brune and Duffin, 1983). The Edwards Limestone 
is composed of 200 to 350 feet of highly fractured and thickly bedded to massive limestone or 
dolomite, with minor shale, clay, and siliceous limestone. The Edwards Limestone consists of 
the Kainer, Person, Kiamichi, and Duck Creek formations. The Person and Kainer formations are 
composed of brittle, massive limestone that is sometimes dolomitic (Flores, 1990). The Edwards 
Limestone is vuggy in places because of the occurrence of solution-collapse zones (Brune and 
Duffin, 1983). These zones, parallel to bedding planes, are the result of dissolution of gypsum 
beds that formerly occurred in this stratigraphic unit. They are cavernous and iron stained and 
contain brecciated limestone, chert, crystalline calcite, and residual clay. They occur mainly 60 
to 80 feet above the base of the Edwards Limestone, within the Person and Kainer formations, 
and are often referred to as the Kirschberg solution zone (Brune and Duffin, 1983; Flores, 1990). 
These solution-collapse zones, as much as 20 feet thick, are the main water-bearing horizons in 
the aquifer, with well yields greater than 300 gallons per minute (Brune and Duffin, 1983; 
Flores, 1990). The Kiamichi and Duck Creek formations constitute the Regional Dense Member 
near the top of the Edwards Limestone, especially in the northern part of the study area. The 
Regional Dense Member separates the Edwards aquifer into upper and lower units that may be 
circumvented by fault displacement (Flores, 1990). The Georgetown Formation is a massive 
nodular limestone that is often hydrologically connected to the underlying Edwards Limestone 
(Brune and Duffin, 1983). 

In addition to solution-collapse zones, groundwater in the Edwards aquifer flows through a 
network of steeply dipping faults and joints (Brune and Duffin, 1983). Field measurements 
indicate that effective porosity is greatest in the Comanche Peak Limestone and decreases in the 
overlying Edwards Limestone and Georgetown Formation (Dahl, 1990; Flores, 1990). This trend 
has been attributed to limestone in the Comanche and Edwards being more brittle than that in the 
Georgetown Formation. Additionally, the lower units of the Edwards aquifer display greater 
effects of karstification (Dahl, 1990; Flores, 1990). Fracture porosity of the Edwards aquifer 
ranges from 0.4 to 2.5 percent away from major faults, to 1.5 to 4.25 percent adjacent to faults 
(Dahl, 1990). These porosity values are lower than porosities (4 to 42 percent) measured in the 
San Antonio segment of the Edwards aquifer (Hovorka and others, 1996). 

5.2 Structure 

The structural features that most influence groundwater flow in the study area are regional dip 
and the occurrence of the Balcones Fault Zone. Cretaceous rock overlies Paleozoic rock, forming 
an angular unconformity (Brune and Duffin, 1983), indicating that the Cretaceous rock was 
deposited on an erosional surface over steeply westward-dipping Paleozoic rock. The Cretaceous 
rock dips toward the southeast at 10 to 300 feet per mile, generally increasing with depth (Figure 
4-2; Brune and Duffin, 1983). This dip angle excludes the effects of faulting. 

The unconfined portion of the northern segment of the Edwards aquifer consists of the outcrop of 
the Edwards and associated limestones, which is wider in the north than in Travis County, near 
the Colorado River (fig. 3-10). This narrowing of the outcrop in the south occurs as a result of 
the combined effects of intense faulting and large topographic variations (fig. 5-2 and 5-3)  
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Figure 5-2. Geologic cross sections of the northern segment of the Edwards aquifer. 

(Baker and others, 1986). Fracturing of the limestone also enhances the porosity of the limestone 
and plays a role in the development of karst features. Normal faulting, common in the southern 
portion of the study area, generally decreases toward the north (Baker and others, 1986). It is 
associated with the Balcones Fault Zone, a zone of faults about 6 to 8 miles wide that extends 
from Del Rio in south-central Texas to Dallas. This zone of normal faulting is characterized by 
major faults that strike north-south to northeast-southwest and dip 40 to 80° to the east, with a  
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Figure 5-3. Major faults in the study area (adapted from Bureau of Economic Geology, 1981). 
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net displacement of 600 to 1,000 feet (Brune and Duffin, 1983; Collins, 1987). Cross faults, sub-
perpendicular to major faults, are also common (Collins, 1987). In the Balcones Fault Zone, 
minor faults and joints occur mainly adjacent to the major faults and flexures. These minor 
faults, characterized by displacement of less than 6 feet, tend to form fracture zones up to 1 mile 
wide. Fracture densities in these zones lie in the range of 6 to 120 joints per 100 feet. Many of 
these minor faults are filled partly by calcite. However, the joints that occur in this area do not 
have mineral fillings, and abutting relationships suggest that these minor faults formed before the 
joints (Collins, 1987). Fracture apertures vary with stratigraphic units in the Edwards aquifer. 
Fracture apertures are generally less than 0.04 inches in Comanche Peak and Georgetown 
Formations and are up to several inches wide in the Edwards Limestone (Collins, 1987). These 
faults influence groundwater flow in two ways: faults provide preferential flow paths, and fault 
displacement in some cases produces barriers to groundwater flow (Brune and Duffin, 1983). 
Preferential groundwater flow along faults and joints in this aquifer often results in formation of 
solution cavities such as caves (Brune and Duffin, 1983). 

Evaluation of fracture and lineament orientations in the northern part of the study area at 
different scales by Dahl (1990) shows different orientations of fractures varying in size from 
mapped major faults to field-observed fractures. The orientations of these fractures play a role in 
determining anisotropy in the aquifer. Dahl (1990) divided fractures into four groups: major 
mapped faults, high-altitude Landsat lineaments, field fractures, and topographic map 
lineaments. Major faults generally trend northeast-southwest. High-altitude Landsat lineaments 
are sparsely distributed and, together with the field fractures, are preferentially oriented 
northwest-southeast and northeast-southwest. The topographic map lineaments are generally 
randomly oriented, with only a slight northeast-southwest trend (Dahl, 1990). Adjacent to major 
faults, fractures are oriented generally northeast-southwest, approximately parallel to major 
faults of the Balcones Fault Zone. Away from major faults, fractures are oriented generally 
northwest-southeast. This trend of northwest-southeast- and northeast-southwest-oriented 
fractures is also observed in the more intensely faulted parts of the aquifer farther south (Kreitler 
and others, 1987).  

The Edwards aquifer dips to the east at an average slope of 60 to 75 feet per mile                     
(fig. 5-4 and 5-5). The slope varies generally because of faulting that produces a stair-step 
configuration downdip (Baker and others, 1986). The thickness of the northern segment of the 
Edwards aquifer increases generally toward the east, varying from less than 100 feet along the 
southern and western margins of the aquifer to more than 500 feet in the east (fig. 5-6).  

5.3 Water Levels and Regional Groundwater Flow 

In the northern segment of the Edwards aquifer, the potentiometric surface slopes generally 
toward the east and south adjacent to the Colorado River (fig. 5-7). Hydraulic gradients in the 
aquifer decrease east of the main faults of the Balcones Fault Zone (Senger and others, 1990). 
Intense fracturing in the Balcones Fault Zone suggests that the aquifer is anisotropic because of 
preferential flow through the generally northeast-southwest-oriented fractures (Baker and others, 
1986; Duffin and Musick, 1991). Groundwater flow along fractures is responsible for the 
southward flow in the southern part of the study area, where fracturing is most intense. Senger 
and others (1990) suggested that some of the major faults, especially in the south, also act as  
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Figure 5-4. Elevation of the base of the Edwards aquifer (based on data from Collins and 
others, 2002). 

hydraulic barriers, restricting west-to-east groundwater flow. In the central and northern parts of 
the aquifer, where faulting is less intense, the influence of fractures on regional groundwater 
flow is less apparent (Senger and others, 1990). 

In the unconfined part of the aquifer, the water table occurs generally less than 100 feet below 
land surface and may approach land surface along incised streams (Senger and others, 1990). In 
the confined part of the aquifer, water levels approach or may in some cases exceed land surface, 
resulting in flowing wells. Water-level fluctuations observed in this aquifer are responses to 
changes in recharge and discharge rates associated with rapid recharge during wet periods (Baker 
and others, 1986). Adjacent to the Colorado River, water-level fluctuations are relatively small  

 19



 

Figure 5-5. Elevation of the top of the Edwards aquifer (based on data from Collins and 
others, 2002). 

because of the stabilizing effect of adjacent Lake Austin and Town Lake. Water-level declines 
have been observed during severe drought periods, such as the mid-1950s, 1983-84, and 1996 
(Ridgeway and Petrini, 1999). A few available hydrographs indicate effects of pumping resulting 
in gradual long-term water-level decline. These hydrographs are from wells located mostly in the 
Pflugerville-Georgetown area. However, most hydrographs indicate a general balance between 
recharge and discharge in the aquifer (Baker and others, 1986; Dahl, 1990; Duffin and Musick, 
1991; Ridgeway and Petrini, 1999). 

Hydrographs in the unconfined part of the aquifer show generally synchronous water-level 
variations at many locations and a close correlation between precipitation and water-level  
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Figure 5-6. Thickness of the Edwards aquifer (based on data from Collins and others, 2002). 

variation (Senger and others, 1990). Rapid water-level rises coincide with major rainfall events, 
especially during late spring and fall (fig. 5-8). The rate of water-level decline depends on the 
amount of recharge occurring during the recession period and the amount of nearby pumping 
(Senger and others, 1990). Continued rainfall tends to retard water-level declines, whereas 
pumping results in accelerated water-level declines. Hydrographs for wells in the confined part 
of the aquifer indicate a lag between major recharge events and water-level responses (Senger 
and others, 1990). In some parts of the aquifer, reversal of hydraulic gradients, partly related to 
increased pumping, has been observed during drought periods. This reversal suggests a potential  
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Figure 5-7. Water-level elevations in the northern segment of the Edwards aquifer. 
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Figure 5-8. Groundwater hydrographs from selected wells in the study area. 
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for the influx of saline groundwater from depth. However, large, persistent cones of depression 
that could potentially produce this influx of saline groundwater have not been identified (Senger 
and others, 1990). 

5.4 Recharge 

Recharge to the Edwards aquifer takes the form of infiltration of precipitation that falls on the 
outcrop of the aquifer or infiltration of runoff derived from watershed areas upstream from the 
aquifer outcrop. The recharge zone in the northern part of the study area consists mainly of 
gently rolling terrain of the Lampasas Cutplains (fig. 3-5). In the south, the recharge zone is 
characterized by steeper, more highly dissected terrain of the Jollyville Plateau (Duffin and 
Musick, 1991). Both areas are characterized by the occurrence of numerous scattered karst 
features, such as dissolution-enhanced fractures, sinkholes, and caves, which are potential 
recharge sites. Sinkholes that occur in the Jollyville Plateau can transmit large amounts of water 
to the aquifer following heavy rainfall events (Kreitler and others, 1987). Recharge also takes the 
form of infiltration along faults and joints that intersect losing segments of perennial and 
intermittent streams that cross the study area. These fractures are often enlarged by karstification 
(Brune and Duffin, 1983). Infiltrating water tends to perch within the Georgetown Formation 
because of the occurrence of low-permeability shale members. Resultant lateral flow often 
discharges from small seeps and springs. Rapid recharge occurs when underlying Edwards and 
Comanche Peak limestones are encountered (Dahl, 1990). 

Recharge processes are more complex in the north, where whether stream segments are gaining 
or losing depends on relative elevations of the water table and streambeds and thus may vary 
seasonally (Duffin and Musick, 1991). Streamflow studies by the United States Geological 
Survey (USGS) in 1978 and 1979 indicate that, in the north, streams generally act as points of 
groundwater discharge rather than recharge (fig. 5-9); (Senger and others, 1990; Duffin and 
Musick, 1991; Slade and others, 2002). Recharge in the north occurs primarily by intermittent 
streams and by infiltration of precipitation on the outcrop. Recharge also occurs in losing 
segments of the major rivers that occur along the western margin of the aquifer (Dahl, 1990; 
Slade and others, 2002). This recharge results in the formation of groundwater mounds along the 
upstream margin of the aquifer (fig. 5-7). Potential for recharge by cross-formational flow also 
exists from the underlying Trinity aquifer (Duffin and Musick, 1991). 

Recharge estimates in the Salado Creek basin by Dahl (1990) indicate recharge of 15 percent of 
precipitation over the aquifer outcrop and 60 percent of storm runoff originating from upstream 
of the aquifer outcrop. These estimates of precipitation recharge were based on groundwater-
level responses and an assumption of 2 percent porosity. The storm-runoff recharge was 
estimated based on stream discharge measurements above and below losing stream segments. 
Dahl (1990) indicated that recharge of precipitation in the Salado Creek basin contributes much 
larger volumes of water to the aquifer (about 29,000 acre-feet in 1985) than storm runoff (about 
2,700 acre-feet). 

Recharge due to cross-formational flow from the underlying Trinity aquifer is a possibility. 
However, it is unlikely that such cross-formational flow would contribute significantly to the 
Edwards aquifer because the two aquifers are separated by low-permeability units of the Glen 
Rose Formation hundreds of feet thick. 
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Figure 5-9. Streamflow gain-loss data from Slade and others (2002). 

5.5 Rivers, Streams, Springs and Lakes 

The northern segment of the Edwards aquifer is bisected by the hydrologic divide between the 
Colorado and Brazos River basins (fig. 5-10). This hydrologic divide coincides approximately 
with the boundary between Travis and Williamson counties. Consequently, surface water flows 
to the north and east toward the Brazos River in Bell and Williamson counties and toward the 
south to the Colorado River in Travis County. The Lampasas and Colorado rivers that form the 
northern and southern boundaries of the study area are the largest rivers in the area. Smaller 
rivers and creeks, such as Brushy Creek, Berry Creek, Salado Creek, and San Gabriel River,  
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Figure 5-10. Location of river-basin boundaries in the study area. 
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cross the outcrop of the aquifer and are likely recipients of groundwater discharge, indicated by 
their perennial flow. Smaller tributaries of these rivers and creeks often flow intermittently as a 
result of storm-related runoff. Groundwater and surface-water systems are closely related in 
recharge and discharge zones, where interchange occurs as a result of recharge and discharge 
processes, respectively (Baker and others, 1986). Groundwater-surface-water interaction along 
gaining and losing stream segments of major rivers and creeks varies by location and hydrologic 
conditions because of significant hydrologic connections between streams and the underlying 
aquifer (Land and Dorsey, 1988). 

In the study area, the relative impact on streamflow of storm-related runoff and groundwater 
discharge in the form of baseflow varies. Streams in which streamflow is dominated by baseflow 
are characterized by relatively small flow-rate fluctuations. Salado Creek, which is dominated by 
spring discharge, especially from Salado Springs, is an example of this type of stream (fig. 5-11). 
Streams dominated by storm runoff, such as Shoal Creek, are characterized by rapid recession 
after storms and low baseflow. Streamflow in Berry Creek is more representative of the streams 
in the study area, and streamflow fluctuations indicate inputs from both baseflow and storm-
related runoff. Comparison of streamflow at pairs of stream gages can be used to indicate 
whether the stream is losing flow owing to recharge or receiving groundwater discharge (fig. 5-
12). Decreased downstream flow commonly indicates a losing stream because of recharge to the 
underlying aquifer, whereas consistent increases in flow are quite often the result of groundwater 
discharge entering the stream. In the study area, decreased streamflow in downstream parts of 
Shoal Creek is consistent with recharge to the aquifer, whereas increased downstream flow in 
Berry Creek and the San Gabriel River can be attributed to groundwater discharge through 
numerous springs and seeps that occur in the area (fig. 5-12). 

Spring and seeps in the western part of the aquifer discharge mostly from fractures or cavities in 
the Edwards Limestone or along the contact between the Edwards and Comanche Peak 
Limestones (Kreitler and others, 1987). In the east, major springs are associated with major 
faults, generally occurring some distance east of these faults.  

5.6 Hydraulic Properties 

As one would expect in a karst system, the hydraulic properties of Edwards aquifer rocks are 
highly variable. This variability can be attributed to many factors, such as (1) limestone primary 
porosity due to facies changes within or between individual stratigraphic units, (2) fracture 
densities, and (3) development of karst features. Hovorka and others (1996) showed that 
limestones deposited in subtidal environments exhibit lower porosities than carbonate sandstones 
or dolomite. On the basis of outcrop descriptions, Hovorka and others (1998) showed that 
fractures and karst features make up 1 to 3 percent of the outcrop area, and karst features develop 
preferentially adjacent to faults and in dolomitized limestone. Matrix permeability accounts for 
only about 1 percent of the flow through the aquifer, and the remainder is contributed by 
fractures and karst features. 

Transmissivity estimates for the Edwards and associated limestones in the northern segment of 
the Edwards aquifer vary widely, lying in the range of 0.5 to 4 × 106 ft2/day, seven orders of 
magnitude (fig. 5-13). These transmissivity estimates are calculated from specific-capacity data 
from the Texas Water Development Board (TWDB) well database using methods outlined in  
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Figure 5-11. Historical mean daily streamflow at selected USGS gaging stations in the study 
area. 

Mace (2001a). The highest transmissivities can be attributed to cave systems, whereas solution-
enhanced fracture porosity and intergranular porosity produce intermediate and low 
transmissivities, respectively (Hovorka and others, 1998). In the aquifer, transmissivity in the 
central part of the unconfined aquifer is generally higher than along the eastern or western 
boundaries. This phenomenon is attributed to fracture densities that are associated with the major 
faults of the Balcones Fault Zone. 
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Figure 5-12. Mean daily streamflow and streamflow gain-loss at upstream-downstream 
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Figure 5-13. Transmissivity estimates based on specific capacity data. 

There is little hydraulic conductivity data that are based on pumping tests for the northern 
segment of the Edwards aquifer. Transmissivity data from the available specific capacity test 
data were converted to hydraulic conductivity based on aquifer thickness (fig. 5-14). Resultant 
hydraulic conductivity values range between 0.01 and more than 30,000 ft/day, and median and 
geometric mean values are 9 ft/day. These values overlap with hydraulic conductivity data     
(2.7 × 10-5 to 13 ft/day) for the San Antonio segment of the Edwards aquifer (Hovorka and 
others, 1996). There is very little hydraulic conductivity data on the unconfined part of the 
aquifer. Spatial distribution of the data suggests no trends, with the highest hydraulic 
conductivity occurring within a few hundred feet of very low hydraulic conductivity values. 
Initially it was decided to distribute hydraulic conductivity in the model in three zones, the 
Jollyville Plateau  
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Figure 5-14. Hydraulic conductivity estimates based on specific capacity data. 

outcrop, the remainder of the Edwards aquifer outcrop, and the confined part of the aquifer. The 
Jollyville Plateau zone coincided with the outcrop of relatively low permeability stratigraphic 
units, such as the Keys Valley Marl, Comanche Peak Limestone, and Cedar Park Limestone. The 
remainder of the aquifer outcrop is composed of the Edwards Limestone and Georgetown 
Formation, which have generally higher permeability than the Jollyville Plateau. The lower 
hydraulic gradients in the downdip part of the aquifer were initially thought to indicate higher 
permeability. 

No published storativity data exist for the northern segment of the Edwards aquifer. 
Consequently, specific yield and specific storage values from the groundwater availability model 
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for the adjacent Barton Spring segment of the Edwards aquifer were used to represent storage in 
the northern segment of the Edwards aquifer (Scanlon and others, 2001). 

5.7 Discharge 

Groundwater discharge from aquifers can take the form of pumping, discharge to springs or 
seeps, or cross-formational flow to an adjacent aquifer. 

The northern segment of the Edwards aquifer is only slightly to moderately developed. 
Consequently, natural discharge through springs and seeps is thought to be much larger than well 
pumping (Duffin and Musick, 1991). TWDB pumping estimates indicate total groundwater 
pumping of 30,000 acre-feet during 1999 (fig. 5-15). Municipal and rural domestic pumping 
together account for almost 90 percent of the groundwater withdrawn from the aquifer. Unlike in 
the San Antonio segment, irrigation pumping is insignificant in the northern segment of the 
Edwards aquifer. Municipalities that use northern Edwards groundwater are located mainly in 
the northern part of the aquifer segment and include Salado, Georgetown, Pflugerville, and 
Round Rock. During the 1980s and 1990s, rural domestic pumping fluctuated between 10,000 
and 15,000 acre-feet per year (fig. 5-16). During the same period, irrigation pumping estimates 
rose rapidly from 1 to 3 acre-feet per year in the early 1980s to approximately 18 acre-feet per 
year in the early 1990s. Municipal pumping also fluctuated, ranging from 6,000 to 13,000 acre-
feet per year. In both rural domestic and municipal pumping, pumping generally increased over 
the time period. Irrigation pumping in the study area apparently ceased in 1994. Manufacturing 
pumping increased gradually through the 1980s and 1990s, from 1,500 acre-feet per year to 
2,500 acre-feet per year. Livestock pumping increased during the early 1980s, from less than 50 
acre-feet per year to about 150 acre-feet per year, and has remained generally constant since 
then. Overall, total pumping from the northern segment of the Edwards aquifer increased rapidly 
during the early 1980s, from less than 20,000 acre-feet per year to about 25,000 acre-feet per 
year (fig. 5-15). In subsequent years, pumping from the northern Edwards aquifer has increased 
gradually. 

The spatial distribution of pumping has been determined based on the spatial distribution of 
respective users: rural domestic, municipal, irrigation, manufacturing, and livestock (fig. 5-17). 
For example, rangeland used for rearing livestock is located primarily on the western side of the 
study area. Consequently, one would expect that pumping for livestock would be concentrated 
on the western, unconfined part of the aquifer. Pumping for rural domestic uses is a function of 
population density outside city limits. Consequently, the spatial distribution of rural domestic 
pumping varies with population density. Municipal and manufacturing wells extracting water 
from the northern segment of the Edwards aquifer are located primarily adjacent to the boundary 
between the confined and unconfined parts of the aquifer. These wells are located mostly in 
southern and central Williamson County and are associated with the municipalities that depend 
on Edwards aquifer groundwater, such as Georgetown, Round Rock, and Pflugerville. Irrigation 
pumping is relatively minor in the study area. Cultivated farmland and associated irrigation are 
located primarily in the eastern part of the aquifer. Seasonally, pumping peaks during the dry 
summer months and declines from fall through spring, when most rainfall occurs (Kreitler and 
others, 1987). 
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Figure 5-15. Total annual groundwater withdrawals from Edwards aquifer (1980-2000). 
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Figure 5-16. Annual groundwater withdrawals for rural domestic, irrigation, manufacturing, 
municipal, and livestock uses. 

Precipitation over the recharge zone and the upstream contributing zone results in rapid increases 
in spring discharge. The lag time between precipitation events and spring response varies from 
almost immediate to more than 1 week (Brune and Duffin, 1983). Faulting frequently results in 
the juxtaposition of relatively impermeable Del Rio Clay and Buda Limestone and Edwards 
aquifer rock. This juxtaposition restricts groundwater flow across faults and often results in 
upward flow along the fault and discharge through springs (Brune and Duffin, 1983; Land and 
Dorsey, 1988; Senger and others, 1990). Hence the occurrence of several major springs—for 
example, Mount Bonnell, Salado, San Gabriel, and Berry springs, adjacent to the boundary 
between unconfined and confined parts of the aquifer (fig. 5-18). Other major springs occurring  
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Figure 5-17. Spatial distribution of pumping for rural domestic, irrigation, manufacturing, 
municipal, and livestock uses. 
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Figure 5-18. Location of major springs discharging from the Edwards aquifer in the study area. 

in the study area include Childers Springs in Bell County; Deep Eddy, Mormon, Power House, 
and Seiders springs in Travis County; and Berry, Knight, San Gabriel, and Manske springs in 
Williamson County (Brune, 1975). Along the southern margin of the study area, discharge from 
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the aquifer often takes the form of numerous small springs or seeps located along the southern 
margin of the Jollyville Plateau (Senger and others, 1990). 

Discharge through springs and seeps is most likely to occur within or adjacent to the unconfined 
part of the aquifer. Discharge in the confined part of the aquifer takes the form of cross-
formational flow from the Edwards aquifer, through the Del Rio Clay, into overlying aquifer 
units such as the Austin Chalk. 

5.8 Water Quality 

Geochemical compositions of groundwater in the Edwards aquifer are used in defining the 
downdip margin of the aquifer. This boundary, referred to as the bad-water line, is defined as the 
easternmost extent of freshwater in the aquifer. Freshwater is defined as water with total 
dissolved solids (TDS) of less than 1,000 mg/l. Use of the bad-water line as the eastern boundary 
of the aquifer is justified because high-TDS groundwater is associated with restricted 
groundwater circulation (Ridgeway and Petrini, 1999), which has been confirmed by the 
occurrence of relatively low concentrations of tritium compared with those of updip parts of the 
aquifer. 

Groundwater in the northern segment of the Edwards aquifer becomes progressively more 
mineralized from the outcrop recharge zone in the west to downdip parts of the aquifer in the 
east (Figure 4-19). Groundwater TDS varies from 200 to 400 mg/l in the recharge zone and 
increases to more than 3,000 mg/l downdip (Baker and others, 1986). Intense faulting in the 
south creates barriers to eastward groundwater flow and results in the occurrence of slightly to 
moderately saline groundwater within 1 to 2 miles of the recharge zone. This distance is much 
less than that of parts of the aquifer farther north, where faulting is less intense and saline 
groundwater occurs more than 10 miles from the recharge zone. In addition to variations of TDS 
across the aquifer, groundwater geochemical compositions also vary downdip from Ca-HCO3- to 
Na-SO4-type waters and Na-Cl-type water (fig 5-19); (Brune and Duffin, 1983). These 
hydrochemical patterns indicate hydrochemical evolution of groundwater along flow paths. In 
the south, where faults are more abundant, hydrochemical zones are much narrower than in the 
north. The large faults that disrupt groundwater flow may also provide pathways for an influx of 
deep saline groundwater, especially in the south (Senger and others, 1990). 

The spatial distribution of groundwater having different geochemical compositions reflects the 
interaction of two main flow systems in the aquifer. These flow systems involve (1) rapid 
circulation of fresh groundwater from the recharge zone and (2) a slow influx of saline 
groundwater from downdip (Senger and others, 1990). The Ca-HCO3-type water that occurs 
within or adjacent to the recharge zone is characterized by high tritium of 7 to 11 Tritium Units 
(TU). The slowly circulating groundwater is characterized by low tritium (< 1 TU) and mixed-
cation-HCO3-, Na-HCO3-, and Na-mixed-anion-type groundwater (fig. 5-19). The contrasting 
low and high tritium in confined and unconfined parts of the aquifer, respectively, indicate that 
most groundwater circulation in the aquifer occurs in the unconfined part of the aquifer. The 
boundary between low- and high-tritium groundwater coincides with the bad-water line, 
indicating relatively little circulation of recently recharged groundwater in the saline parts of the 
aquifer. The bad-water line also follows the downdip boundary of the Na-HCO3 zone in the 
north. In the south, where the Na-HCO3 zone disappears, the bad-water line forms an irregular  
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Figure 5-19. Variation of Edwards aquifer groundwater chemical compositions in the study 
area (modified from Senger and others, 1990). 
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pattern partly because of localized recharge along faults. At the Colorado River, the bad-water 
line coincides with the updip boundary of the Na-Cl zone. The north-south variation of 
groundwater geochemical zones can be explained by the relative influence of fresh and saline 
groundwater flow systems. In the south, where the influx of freshwater is restricted because of 
faulting, groundwater geochemical compositions are influenced largely by updip movement of 
Na-Cl brines from the Gulf Coast Basin. In the north, groundwater geochemical compositions 
are influenced by downdip hydrochemical evolution of fresh groundwater (Senger and others, 
1990). Groundwater compositions do not apparently vary with fluctuating water levels (Baker 
and others, 1986). However, Flores (1990) suggested less fresh to slightly saline groundwater in 
the aquifer as compared with that indicated by a 1986 study. This difference suggests a slightly 
westward shift of the bad-water line over time (Flores, 1990). 

6.0 Conceptual Model of Flow in the Aquifer 

The conceptual model reflects our best understanding of the hydrology of the aquifer. The model 
describes predicted groundwater flow paths, as well as the processes, such as recharge and 
discharge, that constitute the water budget of the aquifer. 

Precipitation that falls on the outcrop of the northern segment of the Edwards aquifer is the 
primary source of recharge water (fig. 6-1). This widespread recharge takes the form of direct 
infiltration through soil and rock and infiltration from numerous intermittent streams. Additional 
recharge results from infiltration of water from streams that cross the aquifer outcrop. 
Groundwater flows generally toward the east, except along the southern margin of the aquifer, 
where there is southward flow toward the Colorado River. Water quality parameters such as 
tritium indicate that there is very little groundwater flow beyond the bad-water line. The 
groundwater potentiometric surface indicates groundwater flow converging on Brushy and 
Salado Creeks, indicating discharge to these streams. This discharge is confirmed by the fact that 
both streams are perennially gaining streams. Other major discharge zones occur on the Colorado 
River along the southern margin of the aquifer, the San Gabriel River, and the Lampasas River 
along the northern margin of the aquifer. This discharge takes the form of springs and seeps that 
flow into the perennial rivers and streams that cross or are adjacent to the aquifer. 

The northern segment of the Edwards aquifer is used primarily as a source of water for 
municipalities located mostly in the central and northern parts of the study area, such as the cities 
of Round Rock, Georgetown, Salado, and Pflugerville. Consequently, groundwater use is greater 
in Williamson and Bell counties than in Travis County. Despite annual increases in groundwater 
pumping averaging 5 percent per year over the past decade, total pumping in the northern 
segment of the Edwards aquifer is relatively small compared with that of the much larger San 
Antonio segment. Estimated pumping for 1999 was approximately 30,000 acre-feet in the 
northern segment of the Edwards aquifer, compared with pumping in excess of 400,000 acre-feet 
per year in the San Antonio segment. In addition to discharge to streams and pumping, 
groundwater discharge from the northern segment of the Edwards aquifer also occurs by cross-
formational flow. Cross-formational flow occurs in the confined part of the aquifer, where 
groundwater discharges by upward flow from the Edwards aquifer to overlying units, such as the 
Austin Chalk. 

 39



 

Figure 6-1. Conceptual model of groundwater flow in the study area. 

7.0 Model Design  

Model design includes (1) choice of code and processor, (2) discretization of the aquifer into 
layers and cells, and (3) assignment of model parameters. The model design must agree as much 
as possible with the conceptual model of groundwater flow in the aquifer. 
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7.1 Code and Processor 

Groundwater flow through the northern segment of the Edwards aquifer was simulated using 
MODFLOW-96, a widely used modular finite-difference groundwater flow code written by 
USGS (Harbaugh and McDonald, 1996). This code was selected because of (1) its capabilities of 
simulating regional-scale groundwater processes in the Edwards aquifer, (2) its documentation 
and wide use (McDonald and Harbaugh, 1988; Anderson and Woessner, 1992), (3) the 
availability of a number of third-party pre- and post-processors for facilitating easy use of the 
modeling software, and (4) its easily available public domain software. Processing MODFLOW 
for Windows (PMWIN) version 5.3 aided in our loading data into the model and viewing model 
outputs (Chiang and Kinzelbach, 2001). Other pre- and post-processors should be able to read 
source files for MODFLOW-96. This model was developed and run on a Dell Optiplex GX150 
with a 930 MHz Pentium III processor and 256 MB RAM running Microsoft Windows 2000 (v. 
5). 

7.2 Layers and Grid 

The lateral extent of the model differs slightly from those of the previously defined aquifer 
boundaries. The eastern boundary of the model coincides with the easternmost occurrence of 
groundwater with TDS of less than 3,000 mg/l (fig. 7-1). These data differ from the TWDB 
definition of the northern segment of the Edwards aquifer, where the eastern boundary is the bad-
water line, as defined by a TDS of 1,000 mg/l. As a precaution, the downdip boundary of the 
model was moved eastward to test whether groundwater flowed beyond the previously defined 
aquifer boundary. This model has one layer that is composed of the undifferentiated Edwards 
and associated limestones. The model grid has 160 columns and 250 rows, for a total of 40,000 
cells. Of these cells, 15,076 are active. The model grid is oriented 20° east of north. The cells 
have uniform dimensions of 1,320 feet by 1,320 feet. This cell size was selected to reflect the 
density of input data while providing adequate output resolution. The uniform cell size facilitates 
the use of spreadsheets and grid-based contouring software for easy data manipulation. 

7.3 Model Parameters 

The model layer was assigned as a confined/unconfined layer type, allowing MODFLOW to 
calculate transmissivity and storativity from simulated saturated thickness and assigned hydraulic 
conductivity and specific storage values. The length and time units used in this model were feet 
and days, respectively. ArcView® was used to distribute model parameters spatially, such as 
aquifer base and top elevations, hydraulic conductivity, specific yield, and specific storage. 

The top and base of the aquifer were based on structural data compiled by the Bureau of 
Economic Geology (fig. 5-4 and 5-5); (Collins and others, 2002). The top of the aquifer was 
defined as land surface in the unconfined part of the aquifer and the top of the Georgetown 
Formation in the confined part of the aquifer. The base of the aquifer was defined as the base of 
the Comanche Peak Limestone.Hydraulic conductivity was initially assigned to different zones 
in the model. These zones represented the Jollyville Plateau, aquifer outcrop, and downdip parts  
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Figure 7-1. Model grid. 

of the aquifer and were initially assigned hydraulic conductivity values to zones based on the 
geology. 

Specific yield and specific storage were assigned uniformly throughout the model grid using 
values similar to those used in the groundwater availability model for the Barton Springs 
segment of the Edwards aquifer (Scanlon and others, 2001). The values for specific yield and 
specific storage used in this model were 0.005 and 5 × 10-6 per foot, respectively. 
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The Slice Successive Over-Relaxation (SSOR) package was used to solve the groundwater flow 
equation. The convergence criterion for iterations was set at 0.01 foot. 

7.4 Model Boundaries 

Model boundaries were assigned for (1) recharge, (2) pumping, (3) streams and springs, and (4) 
initial conditions. ArcView® was used to distribute model boundaries spatially, such as initial 
water-level elevations, drains, general-head boundaries (GHB), recharge, and pumping. 

Initial water-level elevations were interpolated from average water levels for respective wells in 
the TWDB Well Database (fig. 4-7). These water-level elevations represent water-level 
measurements made during the month of January during the years 1990 through 1999. Average 
water levels were used because (1) the aquifer responds rapidly to precipitation, resulting in 
water-level fluctuations of up to 100 feet and (2) there is no apparent long-term regional-scale 
water-level decline in the northern segment of the Edward aquifer. 

The Drain package in MODFLOW was used to simulate groundwater discharge to seeps, 
springs, and perennial streams (fig. 7-2). Discharge from the aquifer takes place only when 
simulated water levels in the drain cells exceed set elevations that represent streambed or spring 
orifice elevations. Discharge through drains is also a function of hydraulic conductance. In this 
model, initial drain hydraulic conductance was set at 1,000,000 ft2/day— a value set high so that 
resistance to flow from the aquifer into the streams could be minimized. This action is justifiable 
because in the study area streambeds sediments are often composed of highly permeable gravel 
or fractured limestone. Drains were used to simulate discharge to perennial streams because in 
this segment of the Edwards aquifer, few losing segments are in the perennial streams (fig. 3-1). 

The GHB Package was used to simulate cross-formational groundwater flow between the 
Edwards aquifer and overlying units. The GHB cells are located primarily in the downdip margin 
of the model and along major topographic lows formed by the major river valleys that cross the 
aquifer (fig. 7-3). These topographic lows have the greatest potential for groundwater discharge 
by cross-formational flow. Discharge through the GHB is head-dependent, as determined by the 
elevation of simulated hydraulic heads relative to GHB heads. The GHB heads were set to 
represent hydraulic heads in an overlying unit. In this model, GHB heads were set to an elevation 
90 feet below land surface to simulate hydraulic heads in overlying stratigraphic units, such as 
the Eagle Ford Group and Buda Limestone. If simulated hydraulic heads exceeded GHB heads, 
groundwater flowed upward out of the aquifer. Otherwise, cross-formational flow entered the 
aquifer. In addition to relative heads, cross-formational flow discharge was also influenced by 
hydraulic conductance initially being set at 3,500 ft2/day. The initial GHB conductance value 
was based on assumption of a very low confining-unit hydraulic conductivity factored over the 
area of each cell. 

Recharge to the northern segment of the Edwards aquifer was spatially distributed based on 
assumptions that (1) recharge takes the form of widespread infiltration from numerous 
intermittent streams and through soils that overlie the aquifer outcrop and (2) recharge is a 
fraction of annual precipitation. Recharge in the model was set initially at 0.000343 ft/day, or 5 
percent of average annual precipitation. 
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Figure 7-2. Distribution of drain cells in the model grid. 

This model simulates the regional effects of pumping for rural domestic, municipal, irrigation, 
industrial, and livestock uses (table 7-1 and 7-2). Municipal and manufacturing pumping was 
distributed based on known well locations and pumping data from the TWDB Water Use Survey 
(fig.5-16 and 7-4). The other uses (domestic, irrigation, and livestock) were distributed 
throughout the model grid, reflecting the spatial distribution of associated land use. Rural 
domestic pumping was distributed based on the spatial distribution of population outside major 
urban areas that lie within the model grid. Pumping was distributed based on population data for 
the respective counties from 1990 and 2000 censuses such that pumping is proportional to the 
population within each active model cell. Irrigation pumping was distributed based on 
1:250,000-scale Land Use and Land Cover data from USGS. Irrigation was assumed to occur on 
all land classified as orchards, row crops, or small grains. Livestock pumping was also 
distributed based on 1:250,000-scale Land Use and Land Cover data from USGS. Livestock 
pumping was assumed on all rangeland. 
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Figure 7-3. General-head boundary cells in the model. 
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Table 7-1. Rate of total groundwater withdrawal from the northern segment of the Edwards 
aquifer. Values expressed in acre-feet per year (data for 1980 through 2000 from 
TWDB water use surveys, 2001 through 2050 from regional water planning 
groups). 

 

County Bell Travis Williamson 

Year    
1980 1,200 3,900 11,200 
1981 1,100 4,500 11,400 
1982 1,100 4,700 12,700 
1983 1,100 5,200 14,400 
1984 1,200 6,100 15,100 
1985 1,100 6,200 16,200 
1986 1,100 5,600 17,400 
1987 1,100 5,700 17,200 
1988 1,100 6,400 14,900 
1989 1,700 7,000 15,500 
1990 1,800 7,600 15,900 
1991 1,800 8,000 14,800 
1992 2,000 8,100 16,700 
1993 2,100 8,800 16,400 
1994 2,100 9,100 17,800 
1995 2,100 9,700 18,800 
1996 2,300 10,100 20,700 
1997 2,100 9,000 20,100 
1998 2,300 9,500 18,300 
1999 2,400 9,700 18,600 
2000 2,400 9,600 19,300 
2010 470 2,600 2,900 
2020 530 3,000 2,800 
2030 590 4,400 2,900 
2040 640 4,500 3,200 
2050 690 4,700 3,100 
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Table 7-2. Rate of rural domestic, irrigation, livestock, manufacturing, and municipal groundwater withdrawal from the northern 
segment of the Edwards aquifer. Values expressed in acre-feet per year (data for 1980 through 2000 from TWDB water 
use surveys, 2001 through 2050 from regional water planning groups). 

      Rural Domestic Irrigation Manufacturing/Mining Municipal Livestock
County Bell Travis Williamson Bell Travis Williamson Bell Travis Williamson Bell Travis Williamson Bell Travis Williamson

Year                          

1980 1,000 3,400             3,600 3 0 0 0 240 1,300 140 260 6,300 20 10 20
1981 910 3,900             3,900 2 0 0 0 200 1,400 160 280 6,100 10 40 20
1982 920 4,100             4,200 1 0 0 0 150 1,500 180 360 7,000 10 70 20
1983 910 4,600            4,500 1 0 1 0 150 1,700 200 400 8,200 10 100 20
1984 920 5,200            4,900 0 0 1 0 230 1,700 260 570 8,500 10 130 20
1985 800 5,100            5,000 6 0 2 0 220 1,700 250 740 9,500 10 130 20
1986 800 4,400             6,600 7 0 2 0 280 1,700 250 860 10,100 10 140 20
1987 810 4,400            5,600 3 0 2 0 320 1,700 260 860 9,900 10 130 20
1988 810       4,800 5,900 5 0 1 0 400 1,700 300 1,100 7,300 10 140 20 
1989 1,300 5,500 6,900 0 0 16 0 400 1,700 460 1,000 6,800 10 140 20 
1990 1,400 6,000            7,500 0 0 18 0 480 1,700 450 970 6,700 10 140 20
1991 1,300 6,500            7,500 0 0 18 0 430 1,800 480 900 5,500 10 140 20
1992 1,400 6,400 7,400 0 0 18 0 460 1,700 580 1,100 7,500 10 140 10 
1993 1,500 6,800 8,000 0 0 0 0 500 1,800 610 1,400 6,600 10 160 10 
1994 1,400 6,900 8,500 0 0 0 0 580 1,800 640 1,600 7,500 10 130 20 
1995 1,400 7,200 8,600 0 0 0 0 660 2,000 700 1,800 8,100 10 130 10 
1996 1,500 7,200 9,300 0 0 0 0 480 1,700 820 2,200 9,700 10 260 20 
1997 1,300 6,300            6,800 0 0 0 0 470 1,700 780 2,100 11,600 10 120 10
1998 1,400 6,300 6,800 0 0 0 0 570 2,000 890 2,400 9,500 10 140 10 
1999 1,400 6,300 6,800 0 0 0 0 580 2,000 990 2,600 9,800 10 140 10 
2000 1,400 6,300            6,800 0 0 0 0 580 2,000 990 2,600 10,500 10 140 10
2010 20 770         850 0 280 0 0 1,100 310 350 300 1,800 110 150 0
2020 20 1,100         1,000 0 250 0 0 1,100 260 410 370 1,500 110 150 0
2030 20 2,400          940 0 230 0 0 1,100 260 470 440 1,700 110 150 0
2040 20 2,500         1,000 0 210 0 0 1,200 260 520 490 2,000 110 150 0
2050 20 2,600          920 0 200 0 0 1,200 260 560 540 2,000 110 150 0



 

 

Figure 7-4. Distribution of total pumping in the model for 1980. 

8.0 Modeling Approach 

The process of modeling the northern segment of the Edwards aquifer included (1) steady-state 
model calibration, (2) historical transient model calibration, and (3) predictions of water-level 
variations over a 50-year planning period based on the transient model and pumping predictions 
developed by the Brazos G and Lower Colorado Regional Water Planning Groups. The steady-
state model was developed first to facilitate easier calibration because some parameters, such as 
aquifer storage and water-level variations over time, do not need to be taken into consideration. 
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In the steady-state model, calibration requires consideration only of spatial variations in the 
aquifer. 

The steady-state model was calibrated to reproduce water levels for early 1980. The steady-state 
model was used to investigate (1) recharge rates, (2) hydraulic properties, (3) boundary 
conditions, and (4) flow budget. Model calibration in the steady-state model involved matching 
simulated water levels and streamflow with available measurement data. Steady-state calibration 
was quantified using the root mean square error (RMSE) between measured and simulated water 
levels, 
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where n is the number of calibration points and hm and hs are measured and simulated water-level 
elevations, respectively, at point i. The calibration process for the steady-state model is designed 
to minimize the RMSE of the model with a target RMSE less than 10 percent of the range of 
measured water-level values.  

Once steady-state calibration was achieved, the resultant model was the basis for the historical 
transient model. In the historical transient model, calibration involved matching water-level and 
streamflow fluctuations with available measurements. After the historical transient model was 
calibrated, it was used to predict how water levels may change over the next 50 years in response 
to predicted pumping and drought.  

9.0 Steady-State Model 

After input data were assembled and the model framework was constructed, the steady-state 
model was calibrated to fit measured parameters. Upon successful calibration, sensitivity of the 
model to selected input parameters was assessed. 

9.1 Steady-State Calibration 

Recharge, hydraulic conductivity, and GHB conductance were adjusted to calibrate the steady-
state model. Minor adjustments were also made to aquifer base elevations to reduce very large 
elevation changes between adjacent cells that otherwise resulted in unrealistic dry cells during 
model simulations. 

Recharge was varied during the calibration process, resulting in a final uniform recharge rate of 
0.0012 ft/day, or 20 percent of average annual precipitation in the model area. Effects of 
recharge were greatest in the recharge zone. Hydraulic conductivity of the model was adjusted 
by varying values in zones that make up the confined part of the aquifer, as well as different 
parts of the unconfined part of the aquifer. The model was relatively insensitive to hydraulic 
conductivity. Therefore, a uniform hydraulic conductivity of 25 ft/day was assigned to active 
cells in the calibrated model. This value is close to the median hydraulic conductivity (9 ft/day) 
but differs from initial zoned values that varied from 5 to 2,000 ft/day. The use of zones could 
not be justified because of (1) the insensitivity of the model, (2) the RMSE not changing whether 
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hydraulic conductivity was uniform or distributed in zones, and (3) the zones not being 
supported by available hydraulic conductivity data that were restricted mostly to the confined 
part of the aquifer. The GHB conductance in the calibrated model was reduced from the initial 
value of 3,500 ft2/day to 20 ft2/day. The effects of varying GHB conductance are greatest in the 
downdip parts of the aquifer. Recharge and GHB conductance have the combined effect of 
influencing the hydraulic gradient across the model. 

Simulated water levels from the calibrated steady-state model are fairly close to measured water 
levels (fig. 9-1). The RMSE of the calibrated model is 32 feet, which is approximately 9 percent 
of the 343-foot range of measured water levels (fig. 9-2). This fact indicates that the average 
difference between measured and simulated water levels in the model is ±32 feet —acceptable 
because the result lies within the 10-percent target for model calibration. 

In addition to the comparison of measured and simulated water levels, a comparison of measured 
streamflow and simulated drain discharge was used to indicate how well the model reproduces 
groundwater discharge to major streams and springs in the study area (fig. 9-3). There is general 
agreement between measured stream discharge of Shoal Creek, Lampasas River, Salado Creek, 
San Gabriel River, and Berry Creek, indicating that the steady-state model does a good job of 
reproducing baseflow to springs and streams. 

The water budget of the steady-state model indicates that total groundwater flow through the 
model is approximately 80,000 acre-feet per year (table 9-1). Of this flow, 55 percent discharges 
to streams, 30 percent discharges through cross-formational flow, and 15 percent is pumped 
mostly for municipal and rural domestic uses. The water budget indicates that most natural 
discharge (~65 percent) and almost all recharge takes place in the unconfined part of the aquifer. 
This fact indicates that most groundwater circulation in the northern segment of the Edwards 
aquifer takes place in the unconfined part of the aquifer. 

9.2 Steady-State Sensitivity Analysis 

After calibration of the steady-state model was completed, the input parameters were analyzed to 
assess the sensitivity of model results to respective input parameters, that is, hydraulic 
conductivity, GHB conductance, pumping, and recharge. Sensitivity analysis is a method of 
quantifying uncertainty of the calibrated model related to uncertainty in the estimates of 
respective aquifer parameters, stresses, and boundary conditions (Anderson and Woessner, 
1992). Determining the sensitivity of the model to specific parameters offers insights into the 
uniqueness of the calibrated model. Sensitivity analysis identifies which parameters have the 
greatest influence on water levels and groundwater discharge to springs and streams. A model is 
sensitive to a specified input parameter if relatively small changes in that parameter result in 
relatively large changes in simulated water levels. In other words, calibration is possible only 
over a narrow range of values and, consequently, model uncertainties are relatively low. A model 
is insensitive if relatively large changes of a specific input parameter produce relatively small 
water-level changes. Insensitivity results in higher uncertainties because the model will calibrate 
over a large range of input parameter values. 
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Figure 9-1. Distribution of measured and calculated water levels from the steady-state model. 
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Figure 9-2. Measured and calculated water levels from the steady-state model. 

Sensitivity is analyzed by systematically varying a parameter value and noting changes in water 
levels at the well locations used to calibrate the model. The water-level changes are quantified by 
calculating the Mean Difference as follows: 
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where: n is the number of points, hsen is the simulated water level for the sensitivity analysis, and 
hcal is the calibrated water level. The Mean Difference is positive if water levels are higher than 
calibrated values and negative if they are lower than calibrated values. 

Water levels in the model of the northern segment of the Edwards aquifer are most sensitive to 
recharge, and, to a lesser extent, to GHB conductance and pumping (fig. 9-4). The insensitivity 
of the model to hydraulic conductivity can be explained partly by the drain cells that simulate 
groundwater discharge to springs and streams in the unconfined part of the aquifer. Drain cells 
reduce the variation of water levels in the unconfined part of the aquifer. Discharge from the 
drains varies, counteracting the effects of hydraulic conductivity changes on water levels. Effects 
of recharge are greatest in the unconfined part of the aquifer because recharge is restricted to 
areas where aquifer rock is exposed at land surface. Effects of GHB conductance are greatest in 
the downdip parts of the aquifer, where GHB cells are located. General-Head Boundary 
conductance and recharge regulate the regional gradient of the aquifer. Varying recharge and 
GHB conductance raises and lowers water levels in up-gradient and down-gradient parts of the 
aquifer, respectively. 
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Figure 9-3. Measured (black) and calculated (red) streamflow from the steady-state model. 
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Table 9-1. Water budget for the calibrated steady-state model for 1980. Values expressed in 
acre-feet per year. 

In Out Net 
Wells - 13,000 -13,000 
Drains - 44,000 -44,000 
Recharge 79,000 - 79,000 
GHB 160 24,000 -24,000 
% Difference   0.4% 

 
County Bell Travis Williamson 
Recharge 23,000 53,000 4,000 
Rivers -24,000 -19,000 -1,400 
GHB -3,800 -18,000 -1,700 
Wells -400 -12,000 -600 
Lateral Inflow 5,000 1,800 1,500 
Lateral Outflow -130 -6,600 -1,600 
Total In 28,000 54,000 5,600 
Total Out -28,000 -55,000 -5,400 
% Difference -0.6% -0.7% 3.3% 

 

 

Figure 9-4. Sensitivity of numerically predicted water levels for 1980. 
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10.0 Transient Model 

After calibration of the steady-state model to conditions in 1980, the model was then calibrated 
to simulate transient conditions during the period 1980 through 2000. 

10.1 Transient Calibration 

Water-level fluctuations during the period 1980 through 2000 were simulated using monthly 
stress periods. Calibration was achieved by adjusting storage parameter values, specific storage, 
and specific yield until the model responses approximated water-level fluctuations observed in 
wells in the model area. Specific yield is applicable to the unconfined part of the aquifer and is 
defined as the volume of water that an unconfined aquifer releases from storage per unit surface 
area of aquifer per unit decline in the water level. Specific storage is applicable to the confined 
part of the aquifer and is defined as a measure of the volume of water per unit volume of aquifer 
rock that enters or leaves storage per unit change in water level. Specific storage and specific 
yield are important factors in transient calibration because they influence water-level responses 
to changes in recharge and discharge. Low specific storage or specific yield values result in 
water-level fluctuations that are larger and more rapid than those of higher specific storage or 
specific yield values. This difference occurs because less water is required to produce a given 
water-level change. 

Best results were obtained using a specific storage of 5 × 10-6 per foot and a specific yield of 
0.0005. In a small area in the western part of the model, characterized by very small water-level 
fluctuations over the transient period, a much higher specific yield of 0.05 was used (fig. 10-1). 
The specific storage value is the same as the value used in the groundwater availability model for 
the Barton Springs segment of the Edwards aquifer (Scanlon and others, 2001), which is not 
surprising because of the proximity of the two segments of the Edwards aquifer. The calibrated 
specific yield values (0.0005 to 0.05) in this model, although generally lower, overlap with the 
range of previous specific yield estimates in the region of 0.005 to 0.06 (Brune and Duffin, 1983; 
Slade and others, 1985; Scanlon and others, 2001). Overall, this model does a good job matching 
observed seasonal and interannual water-level and streamflow fluctuations (fig. 10-2 and 10-3). 
Differences between simulated and observed water-level fluctuations can be attributed to the 
influence of local-scale conditions that are not represented in this regional-scale model. 

Over the calibration period, water-level fluctuations are generally greater in the unconfined part 
of the aquifer than in the confined part of the aquifer. This difference can be attributed to water-
level responses to seasonal and interannual variation of recharge, coupled with the fact that most 
discharge from the aquifer also takes place in the unconfined part of the aquifer. 

Comparison of model results and observations by Ridgeway and Petrini (1999) indicated general 
similarities. Despite rapid water-level fluctuations, the general trend over time indicates gradual 
water-level declines in the southern part of the model area, especially in the Pflugerville-
Georgetown area (fig. 10-2). No long-term water-level declines occur in the less-populated, 
northern part of the model area. 
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Figure 10-1. Distribution of specific yield in the model. 

 

 56



 

 

Figure 10-2. Measured and calculated water-level fluctuations for the period 1980 through 2000. 
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Figure 10-2. (cont.). 

10.2 Transient Sensitivity Analysis 

Upon completion of transient model calibration, the storage parameters were assessed to 
determine the sensitivity of the model to specific yield and specific storage. Sensitivity was 
analyzed by systematically varying specific yield and specific storage to determine associated 
changes in aquifer response over the transient model run. 

Sensitivity analysis indicates that the overall model is more sensitive to variation of specific 
yield than specific storage. Variation of specific storage values ranging from 5 × 10-7 to 5 × 10-5  
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Figure 10-3. Measured and calculated streamflow fluctuations for the period 1980 through 
2000. 

per foot resulted in significant changes in simulated water-level responses only at calibration 
sites within the confined part of the aquifer (fig. 10-4). Variation of specific yield from 0.0005 to 
0.05 produced significant variation of simulated water levels at calibration sites throughout the 
model area (fig. 10-5). 
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Figure 10-4. Sensitivity of model to specific storage. 
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Figure 10-4. (cont.). 
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Figure 10-5. Sensitivity of model to specific yield. 
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Figure 10-5. (cont.). 
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11.0 Predictions 

As part of regional water planning, the regions assessed water demand and current supplies. If 
water demand exceeded current supplies, then there was a need for water. The regions then 
developed and recommended water management strategies to meet any water needs. In general, 
recommended water management strategies exceeded the needs for water. In these cases, the 
volume of water from current supplies plus recommended water management strategies 
exceeded projected demands. We decided that pumping assigned in the model needed to reflect 
projected demands more and not the full capacity of all recommended water management 
strategies. Therefore, in cases where demand exceeded current supplies and recommended water 
management strategies, we proportionally lowered the water needed from the different 
recommended water management strategies. We used a proportional approach because regions 
did not prioritize the different water management strategies and because a proportional approach 
does not favor one strategy over another. 

To assess future availability of groundwater in the northern segment of the Edwards aquifer, the 
calibrated model was used to predict future water levels under average recharge and drought-of-
record conditions. These simulations used projected groundwater pumping that took into account 
projected demand and water management strategies set by the regional planning groups in the 
study area. Water planning under drought conditions is a requirement of Senate Bill 1 water 
planning. The purpose of this water resources planning is to ensure that the state’s future water 
needs are met, even during times of severe drought. 

A drought can be defined as a period of deficient rainfall sufficient in length and severity to 
cause at least partial crop failure or to impair the ability to meet a normal water demand (Wilson 
and Moore, 1998). A drought of record is the most severe drought during the period of record in 
terms of duration and severity. For this model, the drought of record was determined by 
evaluating precipitation records for four stations in the model area. These stations are located at 
the Austin airport, Jarrell, Taylor, and Temple (fig. 3-8). The period of record for three of these 
stations began in the late 1920s and early 1930s, whereas records for the fourth station, Temple, 
extend back to 1900. Evaluation of these precipitation data indicates that the drought of record 
occurred during the period of 1954 through 1956. This drought coincides with the drought of 
record that affected most of Texas during the 1950s. At three of the four stations, 1954 is the 
driest year on record, although the drought of record in the study area was probably not as severe 
as in other parts of Texas. In the study area, the drought lasted only 3 years, and the precipitation 
during the second year of the drought (1955) approached, and in some cases exceeded, average 
annual precipitation. 

In predictive model runs, the drought of record was simulated by recharge equivalent to 20 
percent of the average of precipitation at the four stations during the years 1954, 1955, and 1956. 
These recharge rates are 0.0006, 0.0013, and 0.0008 ft/day, respectively. For non-drought years, 
average recharge (0.0012 ft/day) was used. To simulate future water levels in the aquifer over the 
period 2001 through 2050, six scenarios were run: (1) the 2010 Run, average recharge through 
2007 and drought of record for the remaining 3 years; (2) the 2020 Run, average recharge 
through 2017 and drought of record for the remaining 3 years; (3) the 2030 Run, average 
recharge through 2027 and drought of record for the remaining 3 years; (4) the 2040 Run,  
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Table 11-1. Water budgets for the steady-state, transient, and predictive model runs expressed 
in acre-feet per year. 

 
Year Storage Wells Drains Recharge GHB 
1980 - -13,000 -44,000 79,000 -23,000  
1990 -5,000 -18,000 -51,000 96,000 -21,000  
2000 -9,500 -24,000 -68,000 120,000 -18,000  
2010 3,300 -5,100 -29,000 53,000 -24,000  
2020 3,400 -5,200 -29,000 53,000 -24,000  
2030 3,400 -6,000 -28,000 53,000 -23,000  
2040 3,400 -6,500 -28,000 53,000 -23,000  
2050 3,400 -6,600 -28,000 53,000 -23,000  
2050* 0 -6,600 -49,000 79,000 -25,000  

 
 

 

Figure 11-1. Historical and projected total pumping in the study area. 

average recharge through 2037 and drought of record for the remaining 3 years; (5) the 2050 
Drought Run, average recharge through 2047 and drought of record for the remaining 3 years; 
and (6) the 2050 Average Run, average recharge through 2050 (table 11-1). Predicted pumping 
data used in this model were obtained from the respective regional water planning groups. These 
data indicate projected pumping from the northern segment of the Edwards aquifer at much 
lower rates than at present (fig. 11-1). This difference is the result of conversion from the use of 
Edwards aquifer groundwater to surface water from reservoirs such as the Stillhouse Hollow 
Lake. 
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Figure 11-2. Simulated water-level changes 2010 through 2050, with average recharge. 

Projected water-level changes for each decade were calculated by subtracting predicted water 
levels at the end of each decade from 1980 water levels, the beginning of transient calibration. 
Water levels from 1980 were selected as the baseline for determining predicted water-level 
change because they were characterized by average recharge. Consequently, differences in water 
levels between 1980 and future decades can not be attributed to differences in recharge rates 
except during drought years. 

Under conditions of average recharge, predictive modeling indicates that future water levels in 
the northern segment of the Edwards aquifer will change less than 25 feet, compared with 1980 
water levels (fig. 11-2). Under drought-of-record conditions, water-level declines occur primarily 
along the western margin of the aquifer (fig. 11-3). 
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Figure 11-3. Simulated water-level changes 2010 through 2050, with drought-of-record 
recharge. 

12.0 Limitations of the Model 

All numerical groundwater flow models have limitations. These limitations are usually 
associated with (1) the extent of current understanding of the workings of the aquifer, (2) 
availability and accuracy of input data, and (3) assumptions and simplifications used in 
developing the conceptual and numerical models. The limitations determine the spatial and 
temporal variation of uncertainties in the model because calibration uncertainty decreases with 
increased availability of input data. Additionally, many of the assumptions, degree of 
simplification, and spatial resolution of groundwater flow models are influenced by availability 
of input data. 
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12.1 Input Data 

Several input parameter data sets for the model are based on limited information. These include 
recharge, water-level and streamflow data, hydraulic conductivity, specific storage, and specific 
yield. 

No information on the spatial or seasonal distribution of recharge to the northern segment of the 
Edwards aquifer has been published. Calibrated recharge rates of 20 percent of annual 
precipitation were obtained by trial-and-error. Application of this recharge rate to the transient 
model assumes that (1) a linear relationship exists between precipitation and recharge and (2) no 
threshold must be exceeded before recharge occurs. This assumption suggests the possibility of 
overestimating recharge during dry periods, when all precipitation may be taken up by 
evapotranspiration or absorbed by dry soils. A uniform spatial distribution of recharge to the 
aquifer was assumed for the model. This assumption follows the literature that suggests that 
recharge to the northern segment of the Edwards aquifer takes the form of generally diffuse 
recharge through soils, fractures, and intermittent streams in the aquifer outcrop (Duffin and 
Musick, 1991). The relatively good correlation between observed and simulated water levels and 
stream discharge suggests that, despite recharge uncertainties, the model water budget 
approximates the aquifer water budget. 

Information on the spatial distribution of water levels in the northern segment of the Edwards 
aquifer is limited, especially along the updip and downdip margins of the aquifer. There is also 
model uncertainty associated with the number of wells with annual or more frequent water-level 
measurements. This uncertainty is especially apparent during the 1990s, when water-level 
measurements were made less frequently in the aquifer. 

Uncertainty results from the paucity of streamflow data for the perennial streams that cross the 
aquifer outcrop. Available streamflow data for Berry Creek, Salado Creek, and the San Gabriel 
River are only for a few years during the mid- to late1980s. Streamflow data for the 1990s are 
absent for the Lampasas River. Uncertainty in stream discharge in the southern part of the model 
exists because (1) no streamflow data are available for Brushy Creek and (2) calibrating the 
model to stream discharge is difficult in perennial streams, such as Shoal and Walnut creeks, 
because they have low baseflow components. 

Available transmissivity and hydraulic conductivity data for the northern segment of the 
Edwards aquifer is derived primarily from specific-capacity data obtained from wells located 
mostly in the central and southern parts of the model area. Most of these wells are located 
adjacent to the boundary between the confined and unconfined parts of the aquifer. No data exist 
from the unconfined part of the aquifer. These limited data are apparently random, suggesting 
local influences. Consequently, we decided to use a uniform hydraulic conductivity, based 
initially on the geometric mean of the available data, in this regional-scale model. 

12.2 Assumptions 

Several assumptions were made in the construction of this model. The most important 
assumptions were that (1) no groundwater flows between the northern segment of the Edwards 

 68



aquifer and the underlying Trinity aquifer; (2) recharge is restricted to the aquifer outcrop; (3) 
the Drain package of MODFLOW can be used to simulate discharge to streams flowing over the 
aquifer outcrop; (4) the GHB package of MODFLOW can be used to simulate cross-formational 
flow between the Edwards aquifer and overlying units, such as the Austin Chalk; and (5) 
negligible groundwater flow beyond the 3,000 mg/l isocon. 

The northern segment of the Edwards aquifer is underlain by the Walnut Formation, which is 
reported to yield little or no water in the study area (Duffin and Musick, 1991). Consequently, it 
is unlikely that the Walnut Formation transmits significant amounts of groundwater between the 
Edwards and Trinity aquifers. 

The Drain package of MODFLOW was used to simulate groundwater discharge to perennial 
streams in the study area. The Drain package allows water to move from the aquifer to rivers or 
streams, but not the reverse. Use of this package implies the assumption that the perennial 
streams are always gaining. This assumption is supported by streamflow gain-loss studies by 
Slade and others (2002). Additionally, steady-state and transient calibration results indicate 
overall agreement between measured and simulated discharge to perennial streams. 

The GHB package was used to simulate cross-formational flow between the Edwards aquifer and 
overlying units. The spatial distribution of GHB cells in the model is based on the assumption 
that cross-formational flow takes place in downdip parts of the aquifer and along some valleys 
(Figure 6-3). It is also assumed that the hydraulic head on the boundary is equivalent to 90 feet 
below land surface and does not vary over time. 

12.3 Scale of Application 

The limitations described earlier and the nature of regional groundwater flow models affect the 
scale of application of the model. This model is most accurate in assessing regional-scale 
groundwater issues, such as predicting aquifer-wide water-level changes over the next 50 years 
that may result from different proposed water management strategies. Accuracy and applicability 
of the model decreases when moving from addressing regional- to local-scale issues because of 
limitations of the information used in model construction and the model cell size that determines 
spatial resolution of the model. Consequently, this model is not likely to accurately predict 
water-level declines associated with a single well because (1) these water-level declines depend 
on site-specific hydrologic properties not included in detail in regional-scale models and (2) the 
cell size used in the model is too large to resolve changes in water levels that occur over 
relatively short distances. Addressing local-scale issues requires a more detailed model, with 
local estimates of hydrologic properties, or an analytical model. This model is more useful in 
determining the impacts of groups of wells distributed over a few square miles. The model 
predicts changes in ambient water levels rather than actual water-level changes at a specific 
location, such as an individual well. 

13.0 Future Improvements 

The TWDB plans periodically to update, and thus improve, groundwater availability models. 
This model can be improved by incorporating greater complexity or hydrologic information that 
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was not available initially. Model uncertainty can be reduced with additional information on 
aquifer hydraulic properties, streamflow, water-level elevations, and recharge. 

Additional streamflow data are required in order for us to better determine the seasonal and 
spatial distribution of stream discharge gain and loss. This ability will facilitate the use of the 
streamflow package of MODFLOW as a potentially superior alternative to the Drain package 
and to provide additional data for model calibration. 

Additional hydraulic head measurements and aquifer-test data are required for the northern 
segment of the Edwards aquifer, especially the unconfined part of aquifer. This information can 
be used to improve calibration of the model by increasing the number and spatial distribution of 
sites for comparing measured and simulated water levels. Water-level data are needed for the 
stratigraphic units overlying the Edwards aquifer in order for the GHB to be better constrained. 
Aquifer tests will facilitate determination of whether improving the model by spatially 
distributing hydraulic conductivity, specific storage, and specific yield can be justified. 

This model can also be improved by an investigation of the spatial and temporal distribution of 
recharge. Determination of the hydrologic conditions required for the occurrence of recharge to 
the northern segment of the Edwards aquifer will facilitate better constraints on the seasonal 
distribution of recharge to the aquifer. 

14.0 Conclusions 

A numerical groundwater flow model was constructed to simulate groundwater flow through the 
northern segment of the Edwards aquifer. It is to be used as a tool to evaluate groundwater 
resource management strategies by predicting water-level changes in response to pumping and 
drought. Model construction was based on available hydrologic and geologic data for the 
northern Edwards aquifer. The model is composed of one layer with 40,000 cells, 12,877 of 
which are active. The modeling approach included construction and calibration of steady-state 
(1980) and historical transient (1980 through 2000) models and using the resultant calibrated 
transient model to predict aquifer responses through 2050 under average recharge and drought-
of-record conditions. The predictive model runs used projected pumping developed by the 
Brazos G and Lower Colorado Regional Water Planning Groups. 

The calibrated model does a good job of matching water-level distribution and fluctuations in the 
aquifer and stream discharge. The RMSE for the steady-state model is 32 feet, about 9 percent of 
the hydraulic-head drop across the study area. Calibration of the steady-state and transient 
models resulted in (1) an average recharge rate of 20 percent of mean annual precipitation, (2) 
hydraulic conductivity of 25 ft/day, (3) specific yields of 0.05 to 0.0005, and (4) specific storage 
of 5 × 10-6 per foot. The model is most sensitive to changes in specific yield, recharge, and GHB 
conductance. This model indicates that approximately 50 to 70 percent of groundwater flow 
occurs within the unconfined part of the aquifer, resulting in discharge to perennial streams. 
Pumping, mostly for municipal, rural domestic, and industrial uses, accounts for less than 20 
percent of groundwater discharge from the aquifer; the remaining 10 to 30 percent is discharge 
by cross-formational flow in the confined parts of the aquifer. The much larger water-level 
fluctuations in the unconfined compared with the confined part of the aquifer can be attributed to 
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a more active groundwater flow system, with almost all of the recharge and most of the 
groundwater discharge occurring from the unconfined part of the aquifer. Calibration of the 
transient model indicates that the model is able to reproduce historical water-level fluctuations 
that indicate gradual water-level declines in the Georgetown-Pflugerville area. 

Predictive model runs indicate that under average recharge conditions, water levels will rise 
slightly relative to 1980 water levels throughout most of the study area over the 50-year planning 
period as a result of reduced pumping starting in 2001. Under drought-of-record conditions, 
water levels in the northern segment of the Edwards aquifer will decline, especially along the 
updip margin of the aquifer. In the predictive scenarios run, higher water levels occur in the 
central part of the study area. These higher water levels are the result of projected municipal and 
industrial pumping rates in the Round Rock-Georgetown area that are much lower than historical 
pumping rates. Pumping rates are expected to rise over the 2001 through 2050 period but will 
still be much lower than pre-2000 pumping rates. These lower pumping rates will result from 
conversion from the use of Edwards aquifer groundwater to surface water to meet water 
demands. Effects of these rising pumping rates are most apparent in the southern part of the 
study area. 

15.0 Acknowledgements 

In this modeling effort, many people should be acknowledged for their assistance. First and 
foremost, I would like to thank the Clearwater Underground Water Conservation District for its 
support and interest during the model development. A number of TWDB staff members have 
also been helpful in providing assistance and advice, including Roberto Anaya, Ali Chowdhury, 
Cindy Ridgeway, Richard Smith, and Shirley Wade. The support of TWDB management, 
including Robert Mace, William Mullican, and Kevin Ward, has been helpful in ensuring the 
successful completion of this project.

 71



16.0 References 

Anderson, M. P., and Woessner, W. W., 1992, Applied groundwater modeling: Simulation of 
flow and advective transport: Academic Press, Inc., San Diego, 381 p. 

Baker, E. T., Slade, R. M., Jr., Dorsey, M. E., Ruiz, L. M., and Duffin, G. L., 1986, 
Geohydrology of the Edwards aquifer in the Austin area, Texas: Texas Water Development 
Board, Report 293, 177 p. 

Barrett, M. E., 1996, A parsimonious model for simulation of flow and transport in a karst 
aquifer: The University of Texas at Austin, Ph.D. dissertation, 180 p. 

Brune, G., 1975, Major and historical springs of Texas: Texas Water Development Board, 
Report 189, 95 p. 

Brune, G., and Duffin, G. L., 1983, Occurrence, availability, and quality of groundwater in 
Travis County, Texas: Texas Department of Water Resources, Report 276, 219 p. 

Bureau of Economic Geology, 1981, Austin sheet: Geology Atlas of Texas, 1:250,000, 1 sheet. 

Campana, M. E., 1975, Finite-state models of transport phenomena in hydrologic systems: 
University of Arizona, Ph.D. dissertation. 

Chiang, W., and Kinzelbach, W., 2001, 3D-groundwater modeling with PMWIN: Springer-
Verlag, New York, 2nd ed., 346 p. 

Collins, E. W., 1987, Characterization of fractures in limestones, northern segment of the 
Edwards aquifer and Balcones Fault Zone, central Texas: Gulf Coast Association of 
Geological Societies Transactions, v. 37, 43-54 p. 

Collins, E. W., Woodruff, C. M., Jr., and Tremblay, T. A., 2002, Geologic framework of the 
northern Edwards aquifer, central Texas: Gulf Coast Association of Geological Societies 
Transactions, v. 52, 135-137 p. 

Dahl, S. L., 1990, Hydrogeology and stream interactions of the Edwards aquifer in the Salado 
Creek basin, Bell and Williamson Counties, central Texas: Baylor University, Master’s 
thesis, 154 p. 

Duffin, G., and Musick, S. P., 1991, Evaluation of water resources in Bell, Burnet, Travis, 
Williamson and parts of adjacent counties, Texas: Texas Water Development Board, Report 
326, 105 p. 

Flores, R., 1990, Test well drilling investigation to delineate the downdip limits of usable-quality 
ground water in the Edwards aquifer, Texas: Texas Water Development Board, Report 325, 
70 p. 

 72



Harbaugh, A. W., and McDonald, M. G., 1996, User’s documentation for MODFLOW-96, an 
update to the U.S. Geological Survey modular finite-difference ground-water flow model: 
U.S. Geological Survey Open-File Report 96-485, 56 p. 

Hovorka, S. D., Dutton, A. R., Ruppel, S. C., and Yeh, J. S., 1996, Edwards aquifer ground-
water resources: geologic controls on porosity development in platform carbonates, South 
Texas: The University of Texas at Austin, Bureau of Economic Geology Report of 
Investigations No. 238, 75 p. 

Hovorka, S. D., Mace, R. E., and Collins, E. W., 1998, Permeability structure of the Edwards 
aquifer, South Texas—implications for aquifer management: The University of Texas at 
Austin, Bureau of Economic Geology Report of Investigations No. 250, 55 p. 

Klemt, W. B., Knowles, T. R., Elder, G. and Sieh, T., 1979, Ground-water resources and model 
applications for the Edwards (Balcones Fault Zone) aquifer in the San Antonio region, Texas: 
Texas Department of Water Resources, Report 239, 88 p. 

Klemt, W. B., Perkins, R. D., and Alvarez, H. J., 1975, Groundwater resources of part of central 
Texas with emphasis on the Antlers and Travis Peak Formations: Texas Water Development 
Board Report 195, v. 1 & 2. 

Knowles, T., and Klemt, W. B., 1978, Calibration of the Edwards aquifer model: verification of 
mathematical and physical models in hydraulic engineering: Proceedings of the Hydraulics 
Division Specialty Conference, no. 26, 94-100 p. 

Kreitler, C. W., Senger, R. K., and Collins, E. W., 1987, Geology and hydrology of the northern 
segment of the Edwards aquifer with emphasis on the recharge zone in Georgetown, Texas, 
area: The University of Texas at Austin, Bureau of Economic Geology, report prepared for 
the Texas Water Development Board, 115 p. 

Kuniansky, E. L., 1993, Multilayer finite-element model of the Edwards and Trinity aquifers, 
Central Texas, in Dutton, A. R. (ed.), Toxic substances and the hydrologic sciences: 
American Institute of Hydrology, p. 234-249. 

Kuniansky, E. L., and Holligan, K. Q., 1994, Simulations of flow in the Edwards-Trinity aquifer 
system and contiguous hydraulically connected units, west-central Texas: U.S. Geological 
Survey Water-Resources Investigations Report 93-4039, 40 p. 

Land, L. F., and Dorsey, M. E., 1988, Reassessment of the Georgetown Limestone as a 
hydrogeologic unit of the Edwards Aquifer, Georgetown area, Texas: - U.S. Geological 
Survey, Water-Resources Investigations, WRI 88-4190, 49 p. 

Mace, R. E., 2001a, Estimating transmissivity using specific-capacity data: The University of 
Texas at Austin, Bureau of Economic Geology, Geological Circular No. 01-2, 44 p. 

Mace, R. E., 2001b, Regional groundwater flow modeling in Texas: Texas Water Development 
Board, Unpublished paper, 27 p. 

 73



Maclay, R. W., and Land, L. F., 1988, Simulation of flow in the Edwards aquifer, San Antonio 
Region, Texas, and refinements of storage and flow concepts: U.S. Geological Survey Report 
Water-Supply Paper 2336, 48 p. 

Mahin, D. A., 1978, Analysis of groundwater flow in the Edwards limestone aquifer, San 
Antonio area, Texas: University of Nevada, Reno, M.S. thesis. 

Mahin, D. A., and Campana, M. E., 1983, Discrete-state compartment model of a limestone 
ground-water reservoir—the Edwards aquifer near San Antonio, Texas: University of 
Nevada, Desert Research Institute Water Resources Center Publication 41077, 41 p. 

McDonald, M. G., and Harbaugh, A. W., 1988, A modular three-dimensional finite-difference 
ground-water flow model: U.S. Geological Survey, Techniques of Water-Resources 
Investigations of the United States Geological Survey, Book 6: Model Techniques, Chapter 
A1. 

Proctor, C. V., Jr., Brown, T. E., McGowen, J. H., and Waechter, N. B., 1974, Austin sheet: The 
University of Texas at Austin, Bureau of Economic Geology, Geologic Atlas of Texas, scale 
1:250,000. 

Ridgeway, C., and Petrini, H., 1999, Changes in groundwater conditions in the Edwards and 
Trinity aquifers, 1987-1997, for portions of Bastrop, Bell, Burnet, Lee, Milam, Travis, and 
Williamson Counties, Texas: Texas Water Development Board, Report 350, 38 p. 

Rose, P. R., 1972, Edwards Group, surface and subsurface, Central Texas: The University of 
Texas at Austin, Bureau of Economic Geology Report of Investigations No. 74, 198 p. 

Scanlon, B. R., Mace, R. E., Dutton, A. R., and Reedy, R., 2001, A groundwater flow model of 
the Barton Springs segment of the Edwards aquifer: The University of Texas at Austin, 
Bureau of Economic Geology, contract report prepared for the Lower Colorado River 
Authority, 91 p. 

Senger, R. K., and Kreitler, C. W., 1984, Hydrogeology of the Edwards aquifer, Austin area, 
Central Texas: The University of Texas at Austin, Bureau of Economic Geology Report of 
Investigations No. 141, 35 p. 

Senger, R. K., Collins, E. W., and Kreitler, C. W., 1990, Hydrogeology of the northern segment 
of the Edwards aquifer, Austin region: The University of Texas at Austin, Bureau of 
Economic Geology, Report of Investigations No. 192, 58 p. 

Slade, R. M., 1987, Transmissivities of the northern Edwards Aquifer, in Yelderman, J. C. (ed.), 
Hydrogeology of the Edwards aquifer: Northern Balcones and Washita Prairie segments: 
Austin Geological Society, Guidebook 11, 9-10 p. 

Slade, R. M., Jr., Bentley, J. T., and Michaud, D., 2002, Results of streamflow gain-loss studies 
in Texas, with emphasis on gains from and losses to major and minor aquifer: U.S. 
Geological Survey Open-File Report 02-068, 49 p. 

 74



Slade, R. M., Jr., Ruiz, L., and Slagle, D., 1985, Simulation of the flow system of Barton Springs 
and associated Edwards Aquifer in the Austin area, Texas: U.S. Geological Survey Water-
Resources Investigations Report 85-4299. 

Trippet, A. R., and Garner, L. E., 1976, Guide to points of geologic interest in Austin: The 
University of Texas at Austin, Bureau of Economic Geology, Guidebook No. 16, 38 p. 

Tucker, D. R., 1962, Subsurface Lower Cretaceous stratigraphy, central Texas: The University of 
Texas at Austin, Ph.D. dissertation, 137 p. 

Uliana, M. M., and Sharp, J. M., Jr., 1996, Springflow augmentation possibilities at Comal and 
San Marcos springs, Edwards Aquifer: AAPG Bulletin, v. 80, no. 9, 1516 p. 

Wilson, W. E., and Moore, J. E. (eds.), 1998, Glossary of hydrology: American Geological 
Institute, Alexandria, VA, 248 p. 

Woodruff, C. M., Jr., Snyder, F., De La Garza, L., and Slade, R. M., Jr., (eds.), 1985, Edwards 
Aquifer, northern segment, Travis, Williamson, and Bell Counties, Texas: Austin Geological 
Society, Guidebook 8, 104 p. 

Yelderman, J. C., Jr., Slade, R. M., Jr., Sharp, J. M., Jr., and Woodruff, C. M., Jr., 1987, 
Hydrogeology of the Edwards Aquifer, northern Balcones and Washita Prairie segments: 
Austin Geological Society, Guidebook 11, 91 p. 

 

 75


	Executive Summary
	Introduction
	Study Area
	3.1 Physiography and Climate
	3.2 Geology

	Previous Work
	Hydrogeology
	5.1. Hydrostratigraphy
	5.2 Structure
	Water Levels and Regional Groundwater Flow
	Recharge
	Rivers, Streams, Springs and Lakes
	5.6 Hydraulic Properties
	5.7 Discharge
	5.8 Water Quality

	Conceptual Model of Flow in the Aquifer
	7.0 Model Design
	Code and Processor
	7.2 Layers and Grid
	7.3 Model Parameters
	Model Boundaries
	Year


	Modeling Approach
	9.0 Steady-State Model
	Steady-State Calibration
	9.2 Steady-State Sensitivity Analysis

	Transient Model
	10.1 Transient Calibration
	10.2 Transient Sensitivity Analysis

	Predictions
	12.0 Limitations of the Model
	Input Data
	12.2 Assumptions
	12.3 Scale of Application

	Future Improvements
	14.0 Conclusions
	Acknowledgements
	16.0 References



